Quantcast

Clipsal Saturn 4000 Paint Protector 250 Pack

Transparent | Clipsal Saturn 4000 Paint Protector 250 Pack

Clipsal Saturn 4000 Paint Protector 250 Pack

Item Number: 4000PP-TR

Retail
$52.94
RRP (Inc. GST)
Colour Transparent (TR)
  • Transparent 1 PCE

Datasheet

Barcode

Qty UoM EAN Colour
-
-
-
Clipsal Saturn Horizon Silver Group shot
Saturn 4000 Espresso Black 4025-EB
Clipsal Saturn 4000 Ocean Mist, 4025-OM
Saturn 4000 Pure White 4025-PW

Specifications

Design

Range of product

Saturn Series 4000

Product brand

Clipsal

Sustainable offer status

Green Premium product

Physical

Marking

without marking

EU RoHS Directive

Compliant

Mercury free

Yes

RoHS exemption information

Yes

China RoHS Regulation

Product out of China RoHS scope. Substance declaration for your information

Environmental Disclosure

ENVPEP120506EN

Others

Unit Type of Package 1

PCE

Number of Units in Package 1

1

Package 1 Weight

4 g

Package 1 Height

24 mm

Package 1 width

75 mm

Package 1 Length

115 mm
Show all specifications

Frequently Asked Questions

hide show

Do the 4000PP suit both the Saturn and Saturn Zen ranges?

Yes, the 4000PP will cover bother ranges.

For more information, please refer to the link:
https://www.clipsal.com/Trade/Products/ProductDetail?catno=4000PP

What is the part number for Saturn paint covers?

4000PP-TR ( sold as a pack of 250)

Will the 2000pp fit the C2000 series?

No, unfortunately you will need to use a C2000PP paint protector.

For further information please visit www.clipsal.com/Trade/Products/ProductDetail?catno=C2000PP

How do I scale 0 - 4095 to 6400 - 32000 using 984 Ladder Logic?

The following network scales data from 0-4095 to 6400 - 32,000 when 4-20ma (6400 = 4 mA, 32,000 = 20 mA) outputs are required
but a 0-20ma analog output is used. .





Register 400001 and 400002 are used together in the top node of the EMTH Block, where 400001 is
always 0000 data and 400002 is the variable data, 0-4095, to be scaled. Register 400003, displayed in data
format float, is a fixed floating point value that the user enters as 6.25153 (note that two registers are
used to create the floating point value, 400003 & 400004 in this example). Register 400005 (and 400006)
is the floating point result of the integer and floating point multiplication (EMTH block).





The FTOI (Floating Point TO Integer) block converts the floating point result of registers 400005
and 400006 to an integer value in a single register 400007.

The AD16 block adds the top node register 400007 to the middle node constant 6400 and places
the result in register 400009. This register will then map to one of the analog outputs.

The following data screens shows the input values of 0 and 4095 and there corresponding results.





Starting Register number in Modbus Read functions

Goals and Symptoms

When performing Modbus read commands, it is important to apply the right starting register address in the read function. Otherwise, the wrong register will be accessed from the meter, giving unexpected data for the meter parameter being read.


  • Meter is functioning as expected. The front panel values for voltages and currents are within expected ranges for the system being monitored. However, modbus read functions from a master station (e.g. a PLC) give values that do not correspond to the front panel values.

Facts and Changes

Modbus, modbus rtu, function read, modbus map, holding register, staring register, function 03, modbus read packet

Causes and Fixes

Cause
One probable cause would be that, the modbus function read command is not pointing to the right registers. The modbus protocol requires an offset to be introduced in the starting register address when reading the slaves register.

Resolution

When reading the meter parameters, the Master must send the device a Read Holding Registers packet. This packet must specify a start register and the number of registers to read. When the function read is received, the slave responds with a packet containing the registers in the range defined in the read request.

However, consider the 3710 Modbus map, which states that according to the MODBUS protocol, in response to a request for address 4xxxx, the master reads register xxxx-1 from the slave (3710). For example, a request for register 40011 returns register 10 from the slave.

What does the above statement mean? Why is an offset required?

Holding registers, by default, are defined the 4xxxx range, the first holding register staring at 40001. The starting register in the read packet is, on the other hand, numbered from zero. Hence, the start register zero automatically points to holding register 40001, starting register one points to holding register 40002, etc. The fact that the first holding register is 40001 and not 40000 explains the offset that needs to be introduced in the starting register number.

Hence, considering the 3710 Modbus Map statement, if the Master needs to read register 40011, then the corresponding starting register that needs to be put in the read function would be 10 (0A hex) since register 40011 is the register 10 from the first holding register, 40001:
40001 > Start register 0
40002 > Start register 1
40003 > Start register 2
40004 > Start register 3
40005 > Start register 4
40006 > Start register 5
40007 > Start register 6
40008 > Start register 7
40009 > Start register 8
40010 > Start register 9
40011 > Start register 10

The Modbus Read Request Packet for a master reading 3 registers from a slave with unit ID 100 (64 Hex) and for starting register of 40011 should be:
 

Slave ID
Function
Start Register (40011)
# of Registers
CRC Checksum
64
03
00
0A
00032C3C


To summarize, when looking at a modbus map, the starting register number to be used in the read function:

Start Register = Modbus Register 40001.

 

Original article#12774

Public

All content © 1992-2007 Schneider Electric


Legacy KB System (APS) Data: RESL188799 V1.0, Originally authored by KBAdPM on 11/03/2007, Last Edited by KBAdPM on 11/03/2007
Related ranges: Modbus / JBus

How do I scale data from 0-32,000 to 0-4095 using 984 Ladder Logic?

 

The following network scales data from 0-32,000 to 0-4095 for use with analog signals.





 
Register 300001 contains the analog input data (0-32,000).

This data gets BLKM (Block Moved) to register 400002. 

Registers 400001 and 400002 are the top integer nodes of an EMTH (Divide Integer by Floating point) which is divided by registers 400003 and 400004 (display 400003 as data type float), the middle node registers that contain the floating point constant (7.814408).  

The floating point result is found in registers 400005 and 400006 that is then converted by the FTOI
(Floating point TO Integer) Block to register 400007.

Show More
Homeowner relaxed in their kitchen with Saturn 4000 light switches

Range

Simplicity. Beauty. Style.

The Clipsal Saturn 4000 Series is specifically designed to offer a seamless electrical solution for the home. It offers stylish wall switches and sockets with the choice of glass-look fascia’s in three distinctive colours, or the metallic finishes of Saturn Horizon.

Saturn 4000 goes beyond simple light switches and power points. It is a complete electrical accessory solution that gives superior functionality while enhancing your home’s décor.

Its revolutionary push button technology gives you smooth reliable operation at the touch of a button. And the architecturally designed fascias look great and are a breeze to clean.